The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
United States Government
Academy of the Redwoods
10 March 2017
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
United States Government
Academy of the Redwoods
10 March 2017
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
United States Government
Academy of the Redwoods
10 March 2017
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
United States Government
Academy of the Redwoods
10 March 2017
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem

Determine how many seats in the U.S. House of Representatives each state gets.

CONGRESSIONAL SEATS

(US apportionment population $=309,183,463$)/435 $\approx 710,767$

Today

https://www.census.gov/library/video/census appor tionment machine.html

Today

Today the Census Bureau obtains apportionments using a priority technique of calculation rather than an ad-hoc technique of calculation.

An Average Lesson

1. How to average two different positive numbers.
2. How to round a positive decimal number.

An Average Lesson

1. The average of a and b where $0<a<b$.

$$
\begin{aligned}
\operatorname{ave}(a, b)=\max (a, b) & =b \\
\min (a, b) & =a \\
\operatorname{AM}(a, b) & =(a+b) / 2 \\
\operatorname{GM}(a, b) & =\sqrt{a \times b} \\
\operatorname{HM}(a, b) & =\frac{2}{\left(\frac{1}{a}+\frac{1}{b}\right)}=\frac{2 a b}{a+b}
\end{aligned}
$$

Ad-hoc Modified Divisor

Step 1. Decide the House size: h.
Step 2. Apply a basic divisor method to obtain the preset h.

Serial Distribution

Step 1. Award 1 seat to each state. Today this distributes 50 seats.

Step 2. Then award the $51^{\text {st }}$ seat, $52^{\text {nd }}$ seat, $53^{\text {rd }}$ seat, etc., according to a list of priority numbers.

Priority Numbers

2010 Census			
Seat	Priority	State	Apportionment
434	711308	CA	53
435	710231	MN	8
436	709063	NC	14
437	708459	MO	9
438	706337	NY	28
439	70564	NJ	13
440	703158	MT	2

Priority Numbers

$$
A_{n} \longrightarrow \operatorname{PN}(n)=\frac{\text { population }}{\operatorname{ave}(n, n+1)}
$$

Priority Numbers

where ave $(n, n+1)=$
Jefferson: $\max (n, n+1)$
Dean: HM $(n, n+1)$
Huntington-Hill: GM($n, n+1$)
Webster: AM $(n, n+1)$
Adams: $\min (n, n+1)$

Priority Numbers

where ave $(n, n+1)=$
Jefferson: $\max (n, n+1)$ Largest Divisors
Dean: HM $(n, n+1)$ Harmonic Means
Huntington-Hill: GM $(n, n+1)$ Equal Proportions
Webster: AM $(n, n+1)$ Major Fractions
Adams: min $(n, n+1)$ Smallest Divisors

Today

$$
\begin{aligned}
& A_{n}=\frac{P}{\operatorname{ave}(n, n+1)} \\
& A_{n}=\frac{P}{\sqrt{n \times(n+1)}}
\end{aligned}
$$

Priority Numbers

Census 1790	
State	Population
Connecticut	236841
Delaware	55540
Georgia	70835
Kentucky	68705
Maryland	278514
Massassachutts	475327
New Hampshire	141822
New Jersey	179570
New York	331589
North Carolina	353523
Pennsylvania	432879
Rhode Island	68446
South Carolina	206236
Vermont	85533
Virginia	630560
United States	3615920

Priority Numbers

Census 1790		
State	Population	Seats
Connecticut	236841	1
Delaware	55540	1
Georgia	70835	1
Kentucky	68705	1
Maryland	278514	1
Massassachutts	475327	1
New Hampshire	141822	1
New Jersey	179570	1
New York	331589	1
North Carolina	353523	1
Pennsylvania	432879	1
Rhode Island	68446	1
South Carolina	206236	1
Vermont	85533	1
Virginia	630560	1
United States	3615920	15

Priority Numbers

Census 1790		
State	Population	Seats
Connecticut	236841	1
Delaware	55540	1
Georgia	70835	1
Kentucky	68705	1
Maryland	278514	1
Massassachutts	475327	1
New Hampshire	141822	1
New Jersey	179570	1
New York	331589	1
North Carolina	353523	1
Pennsylvania	432879	1
Rhode Island	68446	1
South Carolina	206236	1
Vermont	85533	1
Virginia	630560	1
United States	3615920	15

Huntington - Hill
$\mathrm{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	1	445873
United States	3615920	15	

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	1	445873
United States	3615920	15	

Priority Numbers

16 VA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	445873
United States	3615920	16	

Priority Numbers

16 VA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	
United States	3615920	16	

Priority Numbers

16 VA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN $(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$			
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	
United States	3615920	16	

Priority Numbers

16 VA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN $(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$			
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	16	

Priority Numbers

16 VA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	1	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	16	

Huntington - Hill

$$
\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}
$$

$$
\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}
$$

Priority Numbers

16 VA 2
17 MA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	336106
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	17	

Huntington - Hill

$$
\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}
$$

$$
\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}
$$

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	17	

Huntington - Hill

$$
\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}
$$

$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$

Priority Numbers

	Census 1790			H-H	Huntington - Hill
	State	Population	Seats	Priority	
16 VA 2	Connecticut	236841	1	167471	
17 MA 2	Delaware	55540	1	39272	
	Georgia	70835	1	50087	$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
	Kentucky	68705	1	48581	
	Maryland	278514	1	196939	$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
	Massassachutts	475327	2	194051	
	New Hampshire	141822	1	100283	
	New Jersey	179570	1	126975	
	New York	331589	1	234468	
	North Carolina	353523	1	249978	
	Pennsylvania	432879	1	306091	
	Rhode Island	68446	1	48398	
	South Carolina	206236	1	145830	
	Vermont	85533	1	60480	
	Virginia	630560	2	257425	
	United States	3615920	17		

Priority Numbers

16 VA 2
17 MA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	1	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	17	

Huntington - Hill
$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$

Priority Numbers

$$
\begin{array}{lll}
16 & \text { VA } & 2 \\
17 & \text { MA } & 2 \\
18 & \text { PA } & 2
\end{array}
$$

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN			
PN $(2)=p / \sqrt{1 \times 2}=p / \sqrt{2 \times 3}=p / \sqrt{6}$			
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	2	306091
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	18	

Priority Numbers

$$
\begin{array}{lll}
16 & \text { VA } & 2 \\
17 & \text { MA } & 2 \\
18 & \text { PA } & 2
\end{array}
$$

Priority Numbers

16 VA 2
17 MA 2
18 PA 2

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN $(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$			
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	18	

Priority Numbers

$$
\begin{array}{lll}
16 & \text { VA } & 2 \\
17 & \text { MA } & 2 \\
18 & \text { PA } & 2
\end{array}
$$

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN			
PN $(2)=p / \sqrt{1 \times 2}=p / \sqrt{2 \times 3}=p / \sqrt{6}$			
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	1	249978
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	2	257425
United States	3615920	18	

Priority Numbers

Priority Numbers

$$
\begin{array}{lll}
16 & \text { VA } & 2 \\
17 & \text { MA } & 2 \\
18 & \text { PA } & 2 \\
19 & \text { VA } & 3
\end{array}
$$

Priority Numbers

	Census 1790			H-H	Huntington - Hill
	State	Population	Seats	Priority	
16 VA 2	Connecticut	236841	1	167471	
17 MA 2	Delaware	55540	1	39272	
18 PA 2	Georgia	70835	1	50087	$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
19 VA 3	Kentucky	68705	1	48581	
	Maryland	278514	1	196939	$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
	Massassachutts	475327	2	194051	
	New Hampshire	141822	1	100283	$\operatorname{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$
	New Jersey	179570	1	126975	
	New York	331589	1	234468	
	North Carolina	353523	1	249978	
	Pennsylvania	432879	2	176722	
	Rhode Island	68446	1	48398	
	South Carolina	206236	1	145830	
	Vermont	85533	1	60480	
	Virginia	630560	3	182026	
	United States	3615920	19		

Priority Numbers

	Census 1790			H-H	Huntington - Hill
	State	Population	Seats	Priority	
16 VA 2	Connecticut	236841	1	167471	
17 MA 2	Delaware	55540	1	39272	
18 PA 2	Georgia	70835	1	50087	$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
19 VA 3	Kentucky	68705	1	48581	
	Maryland	278514	1	196939	$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
	Massassachutts	475327	2	194051	
	New Hampshire	141822	1	100283	$\operatorname{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$
	New Jersey	179570	1	126975	
	New York	331589	1	234468	
	North Carolina	353523	1	249978	
	Pennsylvania	432879	2	176722	
	Rhode Island	68446	1	48398	
	South Carolina	206236	1	145830	
	Vermont	85533	1	60480	
	Virginia	630560	3	182026	
	United States	3615920	19		

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	2	249978
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	3	182026
United States	3615920	20	

Huntington - Hill
$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
$\operatorname{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
PN(1) $=p / \sqrt{1 \times 2}=p / \sqrt{2}$			
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	2	
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	3	182026
United States	3615920	20	

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	2	144325
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	3	182026
United States	3615920	20	

Huntington - Hill
$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
$\operatorname{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$

Priority Numbers

Census 1790			H-H
State	Population	Seats	Priority
Connecticut	236841	1	167471
Delaware	55540	1	39272
Georgia	70835	1	50087
Kentucky	68705	1	48581
Maryland	278514	1	196939
Massassachutts	475327	2	194051
New Hampshire	141822	1	100283
New Jersey	179570	1	126975
New York	331589	1	234468
North Carolina	353523	2	144325
Pennsylvania	432879	2	176722
Rhode Island	68446	1	48398
South Carolina	206236	1	145830
Vermont	85533	1	60480
Virginia	630560	3	182026
United States	3615920	20	

Huntington - Hill
$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
$\operatorname{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$

Priority Numbers

	Census 1790			H-H	Huntington - Hill
	State	Population	Seats	Priority	
16 VA 2	Connecticut	236841	1	167471	
17 MA 2	Delaware	55540	1	39272	
18 PA 2	Georgia	70835	1	50087	$\operatorname{PN}(1)=p / \sqrt{1 \times 2}=p / \sqrt{2}$
19 VA 3	Kentucky	68705	1	48581	
20 NC 2	Maryland	278514	1	196939	$\operatorname{PN}(2)=p / \sqrt{2 \times 3}=p / \sqrt{6}$
	Massassachutts	475327	2	194051	
	New Hampshire	141822	1	100283	$\mathrm{PN}(3)=p / \sqrt{3 \times 4}=p / \sqrt{12}$
	New Jersey	179570	1	126975	
	New York	331589	2	234468	
	North Carolina	353523	2	144325	
	Pennsylvania	432879	2	176722	
	Rhode Island	68446	1	48398	
	South Carolina	206236	1	145830	
	Vermont	85533	1	60480	
	Virginia	630560	3	182026	
	United States	3615920	21		

The Future: Reform?

Four Proposals:

The Future: Reform?

Four Proposals:

- Thirty-thousand.org
- The Wyoming Rule
- Neubauer and Gartner
- Webster's Method

thirty-thousand.org

Here's an example of a concerned group:
http://www.thirty-thousand.org/

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 representatives.

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 representatives.

CA: 1244 seats!

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Thirty-thousand.org advocates 50000/representative.
This leads to a House with 6181 representatives using Webster's method of rounding.

California gets 747 seats.

The Wyoming Rule

The Wyoming Rule is a basic divisor method in which the divisor is the population of the least populous state (currently WY; hence, the name).

Wyoming Rule: YouTube Video

Wikipedia
http://www.outsidethebeltway.com/representation-in-the-house-the-wyoming-rule/

The Wyoming Rule

Here are the results of applying the WY Rule to the 2000 and 2010 censuses.

The Wyoming Rule

Here are the results of applying the WY Rule to the 2000 and 2010 censuses.

2000 smallest state: WY, 493782.
$h=569$ Huntington-Hill

The Wyoming Rule

Here are the results of applying the WY Rule to the 2000 and 2010 censuses.

2000 smallest state: WY, 493782.
$h=569$ Huntington-Hill
2010 smallest state: WY, 563626 $h=543$ Dean HI
$h=542$ Huntington-Hill $h=540$ Webster NJ, SD

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Fordham University
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Fordham University
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Fordham University
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$.

Source: PSC 44(1), January 2011: 1—3.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Fordham University
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is

Source: PSC 44(1), January 2011: 1—3.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Fordham University
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is 871 .

Source: PSC 44(1), January 2011: 1—3.

Webster's Method

The simplest reform would be to replace the geometric mean of decimal rounding in the Huntington-Hill method by the arithmetic mean of decimal rounding in Webster's method.

Webster's Method

The simplest reform would be to replace the geometric mean of decimal rounding in the Huntington-Hill method by the arithmetic mean of decimal rounding in Webster's method.

The research of Balinski and Young has produced two key results. Since the Alabama paradox is a deal-breaker, then congressional apportionment must be based on a divisor method.

Further, Webster's is the only rounding method that is unbiased regarding population size.

Related Problems

Other problems related to apportionment include:

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.
> The Ballot Options.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.
$>$ The Ballot Options.
$>$ Voting: the mechanism of voting.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.
$>$ The Ballot Options.
> Voting: the mechanism of voting.
$>$ Decision: how does one decide the winner?

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Thank You

It is time that I took my seat in this House!
http://www.nia977.wix.com/drbcap

Bonus Resources

US Census Bureau

The U.S. Census Bureau is housed within the Department of Commerce.

Check out the U.S. Census Bureau for what it says about apportionment.
http://www.census.gov/

Summary 7-page brochure:
http://www.census.gov/prod/cen2010/briefs/c2010br-08.pdf

History of Legislation:
http://www.census.gov/history/www/reference/apportionment/apportion ment legislation 1790 - 1830.html

The Apportionment Problem

The Problem is nicely explained in the website:
http://www.ams.org/samplings/feature-column/fcarc-apportion1

Washington's Veto

United States [Philadelphia] April 51792.

Gentlemen of the House of Representatives

I have maturely considered the Act passed by the two Houses, intitled, "An Act for an apportionment of Representatives among the several States according to the first enumeration," and I return it to your House, wherein it originated, with the following objections.

First-The Constitution has prescribed that representatives shall be apportioned among the several States according to their respective numbers: and there is no one proportion or divisor which, applied to the respective numbers of the States will yield the number and allotment of representatives proposed by the Bill.

Second-The Constitution has also provided that the number of Representatives shall not exceed one for every thirty thousand; which restriction is, by the context, and by fair and obvious construction, to be applied to the seperate and respective numbers of the States: and the bill has allotted to eight of the States, more than one for thirty thousand.

George Washington.

First Apportionment

Act

> Chap. XXIII.-An Jet for apportioning Representatives among the several States, according to the first enumeration.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That from and after the third day of March one thousand seven hundred and ninety-three, the House of Representatives shall be composed of members elected agreeably to a ratio of one member for every thirty-three thousand persons in each state, computed according to the rule prescribed by the constitution; that is to say: Within the state of New Hampshire, four; within the state of Massachussetts, fourteen; within the state of Vermont, two; within the state of Rhode Island, two; within the state of Connecticut, seven; within the state of New York, ten; within the state of New Jersey, five; within the state of Pennsylvania, thirteen; within the state of Delaware, one; within the state of Maryland, eight; within the state of Virginia, nineteen; within the state of Kentucky, two; within the state of North Carolina, ten; within the state of South Carolina, six; and within the state of Georgia, two members.

Approved, April 14, 1792.

US History

The first proposed amendment to the US Constitution was called Article the First, also referred to as the Congressional Apportionment Amendment:
http://en.wikipedia.org/wiki/Article the First

More!

For playing around, learning or teaching:
http://www.cut-the-knot.org/ctk/Democracy.shtml

Key Decades

The key decades in the history of the Congressional apportionment problem are 1790, 1840 and 1850, and 1920. Here are some excellent resources for each of these periods.
> Edmund J. James, The First Apportionment of Federal Representatives in the United States, Annals of the American Academy of Political and Social Science, 9 (January 1897): 1-41.
> Johanna Nicol Shields, Whigs Reform the "Bear Garden":
Representation and the Apportionment Act of 1842, Journal of the Early Republic, 5 (Fall 1983): 356-82.
> Charles W. Eagles, Democracy Delayed: Congressional Reapportionment and Urban-Rural Conflict in the 1920s, University of Georgia Press, 1990.

US History

For any serious research of U.S. history, one must know about the Journals of Congress which includes the House Journal and the Senate Journal:
http://memory.loc.gov/ammem/amlaw/lwhj.html

Presidential Elections

The 1870s saw a new twist in apportionment that spilled over into a Presidential election. In the apportionment of 1871, the House size was set to 292. Hamilton's method was legally in place. Yet the actual apportionment approved by Congress differed in four states from the Hamilton apportionment. NY was assigned 33 seats, IL 19, NH 3, and FL 2. But Hamilton's method would have given NY 34, IL 20, NH 2, and FL 1. Whatever Congress may have intended, the apportionment they approved is one that would have been given by Dean's method for the Census of 1870.

Source:
http://mathdl.maa.org/mathDL/46/?pa=content\&sa=viewDocument\&nodeld=3163\&pf=1

Presidential Elections

Why is this such a big deal? In the closely contested election of 1876, Samuel Tilden won NY while his opponent, Rutherford B. Hayes, won the other three states. Hayes beat Tilden in the Electoral College 185 to 184. Had Hamilton's method been followed, the count in the College would have been reversed and Tilden would have been elected!

See the spreadsheet 1876 apportion for an illustration of the Hamilton calculation as compared to the actual apportionment and for a tabulation of the electoral votes in the election of 1876.

Presidential Elections

So in 1876 , Hayes won under a Dean apportionment but would have lost under a Hamilton apportionment, even if no other factors had changed. Now let's jump forward to the Presidential election of 2000. In the Electoral College, George W. Bush defeated Al Gore by a tally of 271 to 266 . (Gore should have had 267 votes, but one of his electors from Washington, D.C. abstained.) Had the Congress used Jefferson's method to apportion the House after the 1990 census, Gore would have garnered 271 electoral votes and become the President. Even more intriguingly, had Hamilton's method been in place, the Electoral College vote would have been tied at 269 and the election thrown to the House of Representatives for resolution. Methods of apportionment do have practical consequences!

1790: Why 33000?

State	Population	30000	31000	32000	33000	34000	35000	36000	37000	38000	39000	40000
CN	236841	0.8947	0.6400	0.4013	0.1770	0.9659	0.7669	0.5789	0.4011	0.2327	0.0728	0.9210
DE	55540	0.8513	0.7916	0.7356	0.6830	0.6335	0.5869	0.5428	0.5011	0.4616	0.4241	0.3885
GA	70835	0.3612	0.2850	0.2136	0.1465	0.0834	0.0239	0.9676	0.9145	0.8641	0.8163	0.7709
KY	68705	0.2902	0.2163	0.1470	0.0820	0.0207	0.9630	0.9085	0.8569	0.8080	0.7617	0.7176
MD	278514	0.2838	0.9843	0.7036	0.4398	0.1916	0.9575	0.7365	0.5274	0.3293	0.1414	0.9629
MA	475327	0.8442	0.3331	0.8540	0.4038	0.9802	0.5808	0.2035	0.8467	0.5086	0.1879	0.8832
NH	141822	0.7274	0.5749	0.4319	0.2976	0.1712	0.0521	0.9395	0.8330	0.7322	0.6365	0.5456
NJ	179570	0.9857	0.7926	0.6116	0.4415	0.2815	0.1306	0.9881	0.8532	0.7255	0.6044	0.4893
NY	331589	0.0530	0.6964	0.3622	0.0482	0.7526	0.4740	0.2108	0.9619	0.7260	0.5023	0.2897
NC	353523	0.7841	0.4040	0.0476	0.7128	0.3977	0.1007	0.8201	0.5547	0.3032	0.0647	0.8381
PA	432879	0.4293	0.9638	0.5275	0.1175	0.7317	0.3680	0.0244	0.6994	0.3916	0.0995	0.8220
RI	68446	0.2815	0.2079	0.1389	0.0741	0.0131	0.9556	0.9013	0.8499	0.8012	0.7550	0.7112
SC	206236	0.8745	0.6528	0.4449	0.2496	0.0658	0.8925	0.7288	0.5739	0.4273	0.2881	0.1559
VT	85533	0.8511	0.7591	0.6729	0.5919	0.5157	0.4438	0.3759	0.3117	0.2509	0.1932	0.1383
VA	630560	0.0187	0.3406	0.7050	0.1079	0.5459	0.0160	0.5156	0.0422	0.5937	0.1682	0.7640
US	3615920	8.5307	8.6426	6.9975	4.5733	6.3506	7.3120	9.4422	9.7276	8.1558	5.7159	9.3980
	Unrepresen	255920	267920	223920	150920	215920	255920	339920	359920	309920	222920	375920

Alabama Paradox

How is this possible?

State	House $\mathbf{2 9 9}$	House $\mathbf{3 0 0}$
AL	7.646	7.671
TX	9.640	9.672
IL	18.640	18.702

With the House size at 299, Alabama was the last state to be allotted an extra representative to make the House size because of it's decimal. When the House size was increased to 300, all states' quotas were increased by 0.33%. And there were two states that got the extra representatives; and, this time, Texas and Illinois beat out Alabama.

Gerrymandering

https://en.wikipedia.org/wiki/North Carolina's congressional districts

Gerrymandering

Illinois congressional districts.

