The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
Mathematics 10: Nature of Mathematics
Santa Rosa Junior College
Spring Semester 2018
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
Mathematics 10: Nature of Mathematics
Santa Rosa Junior College
Spring Semester 2018
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.
Mathematics 10: Nature of Mathematics
Santa Rosa Junior College
Spring Semester 2018
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem Bringing Down the House

Charles Biles, Ph.D.

Mathematics 10: Nature of Mathematics
Santa Rosa Junior College
Spring Semester 2018
website: nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

James Madison
The Federalist 55

The Apportionment Problem

Determine how many seats in the U.S.
House of Representatives each state gets.

CONGRESSIONAL SEATS

(US apportionment population $=309,183,463$)/435 $\approx 710,767$
http://www.census.gov/2010census/data/apportionment-data.php

The First Census 1790

State	Population	
CT	5	236841
DE	1	55540
GA	3	70835
KY	2	68705
MD	6	278514
MA	8	475327
NH	3	141822
NJ	4	179570
NY	6	331589
NC	5	353523
PA	8	432879
RI	1	68446
SC	5	206236
VT	2	85533
VA	10	630560
US	67	3615920

The first apportionment population census.

Source:
Balinski and Young, Fair Representation, Second Edition, 2001, page 158.

Proposals

Your House size:

Proposals

Your House size:

$$
\begin{aligned}
& h<69 \\
& h=69 \quad 1792 \text { House size } \\
& h>69 \text { and } h<100 \\
& h=100 \text { nice looking number } \\
& 100<h<105 \\
& h=105 \Leftarrow \text { remember this } \\
& 105<h<112 \\
& h=112 \Leftarrow \text { remember this } \\
& 112<h<120 \\
& h=120 \Leftarrow \text { remember this } \\
& h>120 \text { unconstitutional }
\end{aligned}
$$

First Apportionment Bills

First Apportionment Bills

Census 1790		
State Population		
	CT	236841
DE	55540	
GA	70835	
KY	68705	
	MD	278514
	MA	475327
	NH	141822
	NJ	179570
	NY	331589
	NC	353523
	PA	432879
	RI	68446
	SC	206236
	VT	85533
	VA	630560
	US	3615920

3792621 - City of Los Angeles 2010

First Apportionment Bills

	Census 1790		House Bil
	State	Population	30000
	CT	236841	
	DE	55540	
	GA	70835	
	KY	68705	
	MD	278514	
	MA	475327	
	NH	141822	
	NJ	179570	
	NY	331589	
	NC	353523	
	PA	432879	
	RI	68446	
	SC	206236	
	VT	85533	
	VA	630560	
	US	3615920	

First Apportionment Bills

	Cen	sus 1790	House Bil
	State	Population	Divisor 30000
	CT	236841	
	DE	55540	
	GA	70835	
	KY	68705	
	MD	278514	
	MA	475327	
	NH	141822	
	NJ	179570	
	NY	331589	
	NC	353523	
	PA	432879	
	RI	68446	
	SC	206236	
	VT	85533	
	VA	630560	
	US	3615920	

First Apportionment Bills

	Cen	us 1790	House Bil
	State	Population	Divisor 30000
	CT	236841	7.895
	DE	55540	1.851
	GA	70835	2.361
	KY	68705	2.290
	MD	278514	9.284
	MA	475327	15.844
	NH	141822	4.727
	NJ	179570	5.986
	NY	331589	11.053
	NC	353523	11.784
	PA	432879	14.429
	RI	68446	2.282
	SC	206236	6.875
	VT	85533	2.851
	VA	630560	21.019
	US	3615920	

First Apportionment Bills

			House Bill	
	Census 1790 State Population		Divisor 3000	Seats
	CT	236841	7.895	7
	DE	55540	1.851	1
	GA	70835	2.361	2
	KY	68705	2.290	2
	MD	278514	9.284	9
	MA	475327	15.844	15
	NH	141822	4.727	4
	NJ	179570	5.986	5
	NY	331589	11.053	11
	NC	353523	11.784	11
	PA	432879	14.429	14
	RI	68446	2.282	2
	SC	206236	6.875	6
	VT	85533	2.851	2
	VA	630560	21.019	21
	US	3615920		

First Apportionment Bills

First Apportionment Bills

Census 1790
State Population
CT 236841
DE 55540
GA 70835
KY 68705
MD 278514
MA 475327
NH 141822
NJ 179570
NY 331589
NC 353523
PA 432879
RI 68446
SC 206236
VT 85533

VA	630560
US	3615920

House Bill
Divisor 30000 Seats
$7.895 \quad 7$
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
$15.844 \quad 15$
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$21.019 \quad 21$
112

Senate Bill
Divisor 33000 Seats

7.177	7
1.683	1
2.147	2
2.082	2
8.440	8
14.404	14
4.298	4
5.442	5
10.048	10
10.713	10
13.118	13
2.074	2
6.250	6
2.592	2
19.108	19

First Apportionment Bills

Census 1790
State Population
CT 236841
DE 55540
GA 70835
KY 68705
MD 278514
MA 475327
NH 141822
NJ 179570
NY 331589
NC 353523
PA 432879
RI 68446
SC 206236
VT 85533

VA	630560
US	3615920

House Bill
Divisor 30000 Seats
7.8957
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
15.84415
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$21.019 \quad 21$
112

Rule of Three

Federalists in Congress apply a new idea:
Multiply the House size by each state's proportion to determine the state's quota (fair share of the House).

Rule of Three

Federalists in Congress apply a new idea:

Multiply the House size by each state's proportion to determine the state's quota (fair share of the House).

$$
q u o t a=(\text { House size }) \times \frac{\text { state population }}{\text { national population }}
$$

Rule of Three

Federalists in Congress apply a new idea:

Multiply the House size by each state's proportion to determine the state's quota (fair share of the House).

$$
q u o t a=(\text { House size }) \times \frac{\text { state population }}{\text { national population }}
$$

Rule of Three

The House Bill

Census 1790

State	
CT	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

22

The House Bill

Census 1790

State	
CT	Population
DE	536841
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

House Bill

Divisor 30000 Seats

7.8957
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
15.84415
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$\begin{array}{rr}21.019 \quad 21 \\ & 112\end{array}$

The House Bill

Census 1790

State	
CT	2368410 ation
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

House Bill

Divisor $\mathbf{3 0 0 0 0}$	Seats
7.895	7
1.851	1
2.361	2
2.290	2
9.284	9
15.844	15
4.727	4
5.986	5
11.053	11
11.784	11
14.429	14
2.282	2
6.875	6
2.851	2
21.019	21
	112

$h=112$

The House Bill

Census 1790

State	
Population	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

House Bill

Divisor $\mathbf{3 0 0 0 0}$	Seats	Quota $\boldsymbol{h}=\mathbf{1 1 2}$
7.895	7	7.336
1.851	1	1.720
2.361	2	2.194
2.290	2	2.128
9.284	9	8.627
15.844	15	14.723
4.727	4	4.393
5.986	5	5.562
11.053	11	10.271
11.784	11	10.950
1.429	14	13.408
2.282	2	2.120
6.875	6	6.388
2.851	2	2.649
21.019	21	19.531
	112	112

Problem

Census 1790	
State	
Copulation	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

House Bill

Divisor $\mathbf{3 0 0 0 0}$	Seats	Quota $\boldsymbol{h}=\mathbf{1 1 2}$
7.895	7	7.336
1.851	1	1.720
2.361	2	2.194
2.290	2	2.128
9.284	9	8.627
15.844	15	14.723
4.727	4	4.393
5.986	5	5.562
11.053	11	10.271
11.784	11	10.950
14.429	14	13.408
2.282	2	2.120
6.875	6	6.388
2.851	2	2.649
21.019	21	19.531
	112	112

The Quota Rule is violated.

The Senate Bill

Census 1790	
State	
Copulation	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

Senate Bill

Divisor $\mathbf{3 3 0 0 0}$ Seats	Quota $\boldsymbol{h}=\mathbf{1 0 5}$	
7.177	7	6.877
1.683	1	1.613
2.147	2	2.057
2.082	2	1.995
8.440	8	8.088
14.404	14	13.803
4.298	4	4.118
5.442	5	5.214
10.048	10	9.629
10.713	10	10.266
13.118	13	12.570
2.074	2	1.988
6.250	6	5.989
2.592	2	2.484
19.108	19	18.310
	105	105

No
Quota Rule Violation

Problem

Census 1790		Senate Bill		Quota $\mathrm{h}=105$
State	Population	Divisor 330	Seats	
CT	236841	7.177	7	6.877
DE	55540	1.683	1	1.613
GA	70835	2.147	2	2.057
KY	68705	2.082	2	1.995
MD	278514	8.440	8	8.088
MA	475327	14.404	14	13.803
NH	141822	4.298	4	4.118
NJ	179570	5.442	5	5.214
NY	331589	10.048	10	9.629
NC	353523	10.713	10	10.266
PA	432879	13.118	13	12.570
RI	68446	2.074	2	1.988
SC	206236	6.250	6	5.989
VT	85533	2.592	2	2.484
VA	630560	19.108	19	18.310
US	3615920		105	105

Large states are favored over small states.

Hamilton's Method

State	Population	
CT	236841	
DE	55540	
GA	70835	
KY	68705	
MD	278514	
MA	475327	
NH	141822	
NJ	179570	
NY	331589	
NC	353523	
PA	432879	
RI	68446	
SC	206236	
VT	85533	
VA	630560	
US	3615920	120.5307

Hamilton's Method

State	Population	$h=120$
CT	236841	
DE	55540	
GA	70835	
KY	68705	
MD	278514	
MA	475327	
NH	141822	
NJ	179570	
NY	331589	
NC	353523	
PA	432879	
RI	68446	
SC	206236	
VT	85533	
VA	630560	
US	3615920	120.5307
		$=30000$

Hamilton's Method

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q
CT	236841		7.860	7
DE	55540		1.843	1
GA	70835		2.351	2
KY	68705		2.280	2
MD	278514		9.243	9
MA	475327		15.774	15
NH	141822		4.707	4
NJ	179570		5.959	5
NY	331589		11.004	11
NC	353523		11.732	11
PA	432879		14.366	14
RI	68446		2.271	2
SC	206236		6.844	6
VT	85533		2.839	2
VA	630560		20.926	20
US	3615920	120.5307	120	111
$d=30000$				

32

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120
$d=30000$					

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

This became the first apportionment bill passed by Congress.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

This became the first apportionment bill passed by Congress.

The bill is sent to President Washington for approval.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

This became the first apportionment bill passed by Congress.

The bill is sent to President Washington for approval.

Washington vetoes the bill.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

[^0]
Hamilton's Method

State	Population	$h=120$	Quota Lower Q	Appt	
CT	236841		7.8607	8	Connecticut:
DE	55540		1.843 1	2	236841/8 = 29605.13
GA	70835		$2.351 \quad 2$	2	
KY	68705		2.280	2	
MD	278514		9.243 9	9	Delaware:
MA	475327		15.77415	16	55540/2 = 27770
NH	141822		4.7074	5	
NJ	179570		5.959	6	
NY	331589		11.00411	11	
NC	353523		11.73211	12	
PA	432879		14.36614	14	
RI	68446		2.271	2	
SC	206236		$6.844 \quad 6$	7	
VT	85533		2.8392	3	
VA	630560		$20.926 \quad 20$	21	U.S.:
US	3615920	120.5307	$120 \quad 111$	120	$3615920 / 120=30,132.66 \ldots$

Basic Jefferson Method

After Washington's veto letter of 5 April 1792, Congress quickly passes the original Senate bill. Washington signed the bill on 14 April 1792.

Two Methodologies

- Divisor Methods
- Quota Methods

Two Methodologies

- Divisor Methods
- Basic
- Modified
- Quota Methods

Two Methodologies

- Divisor Methods
- Basic: h is the result
- Modified
- Quota Methods

Two Methodologies

- Divisor Methods
- Basic: h is the result
- Modified: h is the goal
- Quota Methods

Two Methodologies

- Divisor Methods
- Basic: h is the result
- Modified: h is the goal
- Quota Methods
h is the resource

Basic Jefferson Method

1. Decide on a divisor d (constituency).

Basic Jefferson Method

1. Decide on a divisor d (constituency).
2. Calculate each state's quotient:

$$
\begin{aligned}
\text { quotient } & =\text { population/divisor } \\
q & =p / d
\end{aligned}
$$

Basic Jefferson Method

1. Decide on a divisor d (constituency).
2. Calculate each state's quotient:

$$
\begin{aligned}
\text { quotient } & =\text { population/divisor } \\
q & =p / d
\end{aligned}
$$

3. The state's apportionment is the integer part of $q: a=\operatorname{int}(q)$.

Basic Jefferson Method

1. Decide on a divisor d (constituency).
2. Calculate each state's quotient:

$$
\begin{aligned}
\text { quotient } & =\text { population/divisor } \\
q & =p / d
\end{aligned}
$$

3. The state's apportionment is the integer part of q : $a=\operatorname{int}(q)$.

The resulting house size is the sum of each state's apportionment.

First 60 years

A Basic Divisor Method would be used as the House apportionment method until 1850.

Basic Jefferson Method

Problems are discovered as the method is used; however, defects of the method were evident from the beginning.

Basic Jefferson Method

Problems are discovered as the method is used; however, defects of the method were evident from the beginning.

Jefferson's method systematically favors larger states; further, it can violate the Quota Rule.

1830 Census

Three new methods are proposed to deal with the decimal part of a state's quotient.

1830 Census

Three new methods are proposed to deal with the decimal part of a state's quotient.

Jefferson: round down (drop the decimal).

1830 Census

Three new methods are proposed to deal with the decimal part of a state's quotient.

Jefferson: round down (drop the decimal).
Adams: round up.

1830 Census

Three new methods are proposed to deal with the decimal part of a state's quotient.

Jefferson: round down (drop the decimal).
Adams: round up.
Dean: round down or up according to which option gives a state's constituency closest to the divisor.

1830 Census

Three new methods are proposed to deal with the decimal part of a state's quotient.

Jefferson: round down (drop the decimal).
Adams: round up.
Dean: round down or up according to which option gives a state's constituency closest to the divisor.

Webster: round normally.

James Dean

In 1830 the US population was 11,931,578. Consider: constituency = 50,000 people.

James Dean

In 1830 the US population was 11,931,578. Consider: constituency $=50,000$ people.

Vermont's population: 280,657.
Vermont's quotient: $280,657 / 50,000=5.613$.

James Dean

In 1830 the US population was 11,931,578. Consider: constituency $=50,000$ people.

Vermont's population: 280,657.
Vermont's quotient: $280,657 / 50,000=5.613$.
At this point, Jefferson apportions 5 seats to Vermont; Adams, 6 seats.

James Dean

In 1830 the US population was 11,931,578. Consider: constituency $=50,000$ people.

Vermont's population: 280,657.
Vermont's quotient: $280,657 / 50,000=5.613$.
At this point, Jefferson apportions 5 seats to Vermont; Adams, 6 seats.
With 5 seats the constituency is $280,657 / 5=56,131$.
With 6 seats the constituency is $280,657 / 6=46,776$.

James Dean

In 1830 the US population was 11,931,578. Consider: constituency $=50,000$ people.

Vermont's population: 280,657.
Vermont's quotient: 280,657/50,000 $=5.613$.

At this point, Jefferson apportions 5 seats to Vermont; Adams, 6 seats.

With 5 seats the constituency is 280,657/5 = 56,131.
With 6 seats the constituency is $280,657 / 6=46,776$.

A constituency of 46,776 is closer to the target constituency of 50,000; hence, Dean awards Vermont 6 seats.

James Dean

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $p /(n+1)$ is closer to d than p / n.

James Dean

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $p /(n+1)$ is closer to d than p / n.

James Dean

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $p /(n+1)$ is closer to d than p / n.

This is mathematically equivalent to: let the apportionment be $n+1$ iff

James Dean

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $p /(n+1)$ is closer to d than p / n.

This is mathematically equivalent to: let the apportionment be $n+1$ iff $q \geq \operatorname{HM}(n, n+1)$.

Daniel Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $q \geq n+.5$

Daniel Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $q \geq n+.5=\mathrm{AM}(n, n+1)$.

Daniel Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $q \geq n+.5=\mathrm{AM}(n, n+1)$.

Dean:

Daniel Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $q \geq n+.5=\operatorname{AM}(n, n+1)$.

Dean:

Webster:

Daniel Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ iff $q \geq n+.5=\operatorname{AM}(n, n+1)$.

Dean:

Webster:

Dean and Webster

Step 1: Select the constituency, d.
Step 2: Calculate $q=p / d$ and $n=\operatorname{int}(q)$.
Step 3: Let the apportionment be either n or $n+1$, with $n+1$ if and only if

Dean:

$$
\text { Dean: } a=n+1 \Leftrightarrow H M(n, n+1) \leq q \text {. }
$$

Webster:

Webster: $a=n+1 \Leftrightarrow \mathrm{AM}(n, n+1) \leq q$.

1830 Census

In 1831 there were four different proposed apportionment methods based on a given divisor. The difference was in how the method chose to round a state's quotient (state's population divided by the chosen divisor).

1830 Census

In 1831 there were four different proposed apportionment methods based on a given divisor. The difference was in how the method chose to round a state's quotient (state's population divided by the chosen divisor).

Jefferson: round down (min).
Adams: round up (max).
Dean: round by closest constituency (HM). Webster: round normally (AM).

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	min	AM	HM	max
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

74

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	min	AM	HM	max
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

75

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	min	AM	HM	max
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	min	AM	HM	max
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	Jefferson	AM	HM	max
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	Jefferson	AM	HM	Adams
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

79

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	Jefferson	Webster	HM	Adams
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	Jefferson	Webster	Dean	Adams
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

Census 1810		$d=35000$				
State	Population	Quotient	Jefferson	Webster	Dean	Adams
CT	261818	7.4805	7	7	8	8
DE	71004	2.0287	2	2	2	3
GA	210346	6.0099	6	6	6	7
KY	374287	10.6939	10	11	11	11
MD	335946	9.5985	9	10	10	10
MA	700745	20.0213	20	20	20	21
NH	214460	6.1274	6	6	6	7
NJ	241222	6.8921	6	7	7	7
NY	953043	27.2298	27	27	27	28
NC	487971	13.9420	13	14	14	14
OH	230760	6.5931	6	7	7	7
PA	809773	23.1364	23	23	23	24
RI	76931	2.1980	2	2	2	3
SC	336569	9.6163	9	10	10	10
TN	243913	6.9689	6	7	7	7
VT	217895	6.2256	6	6	6	7
VA	817594	23.3598	23	23	23	24
US	6575234	188.1222	181	188	189	198

In a Round About Way

$\begin{aligned} & \operatorname{HM}(7,8)= \\ & 7.4666 \cdots \end{aligned}$	Census 1810		$d=35000$				
	State	Population	Quotient	Jefferson	Webster	Dean	Adams
	CT	261818	7.4805	7	7	8	8
	DE	71004	2.0287	2	2	2	3
	GA	210346	6.0099	6	6	6	7
	KY	374287	10.6939	10	11	11	11
	MD	335946	9.5985	9	10	10	10
	MA	700745	20.0213	20	20	20	21
	NH	214460	6.1274	6	6	6	7
	NJ	241222	6.8921	6	7	7	7
	NY	953043	27.2298	27	27	27	28
	NC	487971	13.9420	13	14	14	14
	OH	230760	6.5931	6	7	7	7
	PA	809773	23.1364	23	23	23	24
	RI	76931	2.1980	2	2	2	3
	SC	336569	9.6163	9	10	10	10
	TN	243913	6.9689	6	7	7	7
	VT	217895	6.2256	6	6	6	7
	VA	817594	23.3598	23	23	23	24
	US	6575234	188.1222	181	188	189	198

1840 Census

In 1842 the apportionment debate began with the political game: divisor! On one day in the 242 member House, 59 motions were made to establish a divisor. The values ranged from 30000 to 141000 with majority from 50159 to 62172.

1840 Census

In 1842 the apportionment debate began with the political game: divisor! On one day in the 242 member House, 59 motions were made to establish a divisor. The values ranged from 30000 to 141000 with majority from 50159 to 62172.

The Apportionment Act of 1842 used a basic divisor method with $d=70680$ and Webster's method of rounding. This yielded $h=223$, the only time in U.S. history that h decreased as a result of a census-based re-apportionment.

The Vinton Act

The Vinton Act of 1850 (Representative Samuel Vinton, Whig-Ohio) was passed to head off politicizing the census figures. The idea was to adopt a permanent appropriation act.

The Vinton Act

The Vinton Act specified a House with 233 seats to be apportioned by Hamilton's method.

The Vinton Act

The Vinton Act specified a House with 233 seats to be apportioned by Hamilton's method.

But experience exposed problems with the Vinton Act.

Lessons from History

The quota method is subject to counter-intuitive paradoxes:
$>$ The Alabama Paradox
> The Population Growth Paradox

Alabama Paradox

The Alabama paradox may occur when applying the Hamilton quota method:
when the number of House seats is increased, a given state's apportion may decrease.

The Deal Breaker

Results from the 1890 census doomed Hamilton's Method.

1910

Apportionment based on the 1910 census came from another mutation in apportionment methodology.

Congress abandoned the Quota Method and used a modified divisor method.

Modified Divisor Methods

Step 1. Select the House size, h.
Step 2. Apply a Basic Divisor Method to obtain h seats.

1910: $h=433$ and Webster's method.

1920 Census

In the 1920 decade, for the only time in U. S. History, no census-based re-apportionment act was passed.

Congress could not agree on either the size of the House or on the method of apportionment. Further, the politics of prohibition played a significant role: the dries would not support any proposal that gave the wets more power.

Today

The current method consists of the Census Act of 1929 (which froze $h=435$) and a 1941 amendment that specifies the apportionment method of

Today

The current method consists of the Census Act of 1929 (which froze $h=435$) and a 1941 amendment that specifies the apportionment method of Huntington and Hill.

Today

The Huntington-Hill method is a divisor method:

$$
\text { Let } q=p / d \text { and } n=\operatorname{int}(q) \text {. }
$$

Then $a=n+1$ iff $q \geq$

Today

The Huntington-Hill method is a divisor method:
Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \mathrm{GM}(n, n+1)$.

Huntington-Hill

Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \operatorname{GM}(n, n+1)$.

Huntington-Hill

Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \operatorname{GM}(n, n+1)$.
Dean:

Huntington-Hill

Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \mathrm{GM}(n, n+1)$.
Dean:

$\mathrm{H}-\mathrm{H}:$

Huntington-Hill

Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \operatorname{GM}(n, n+1)$.
Dean:

$\mathrm{H}-\mathrm{H}:$

Criterion: $a=n+1$ iff $\frac{d}{\left(\frac{p}{n+1}\right)} \leq \frac{\left(\frac{p}{n}\right)}{d}$

Huntington-Hill

Let $q=p / d$ and $n=\operatorname{int}(q)$.
Then $a=n+1$ iff $q \geq \operatorname{GM}(n, n+1)$.
Dean:

H-H:

Criterion: $a=n+1$ iff $\frac{d}{\left(\frac{p}{n+1}\right)} \leq \frac{\left(\frac{p}{n}\right)}{d}$
iff $\mathrm{GM}(n, n+1) \leq q$.

The Aftermath

Michel Balinski, Professor of Mathematics at SUNY Stony Brook and H. Peyton Young, Professor of Mathematics at Johns Hopkins, proved the following theorem in 1982:

The Aftermath

Michel Balinski, Professor of Mathematics at SUNY Stony Brook and H. Peyton Young, Professor of Mathematics at Johns Hopkins, proved the following theorem in 1982:

There are no perfect apportionment methods.

The Aftermath

Michel Balinski, Professor of Mathematics at SUNY Stony Brook and H. Peyton Young, Professor of Mathematics at Johns Hopkins, proved the following theorem in 1982:

There are no perfect apportionment methods.

Any method that satisfies the quota rule produces paradoxes; any method that is free of the Alabama paradox may violate the quota rule.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded appropriately and summed, the house size is achieved.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded appropriately and summed, the house size is achieved.

Montana

In the 1990 apportionment Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

MT argued the H-H method is unconstitutional and that either Dean's or Adams's method should be used. The federal judges voted 2-1 in favor of MT.

Montana

In the 1990 apportionment Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

MT argued the H-H method is unconstitutional and that either Dean's or Adams's method should be used. The federal judges voted 2-1 in favor of MT.

Montana

In the 1990 apportionment Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

MT argued the H-H method is unconstitutional and that either Dean's or Adams's method should be used. The federal judges voted 2-1 in favor of MT.

Montana

In the 1990 apportionment Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

MT argued the H-H method is unconstitutional and that either Dean's or Adams's method should be used. The federal judges voted 2-1 in favor of MT.

Montana

In the 1990 apportionment Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

MT argued the H-H method is unconstitutional and that either Dean's or Adams's method should be used. The federal judges voted 2-1 in favor of MT.

Distributing 435 seats among 50 states according to their respective populations is a math problem.

Today

Today the Census Bureau obtains apportionments using a priority technique of calculation rather than an ad-hoc technique of calculation.

Census Bureau video 2:09 minutes. The Amazing Apportionment Machine

Apportionment by Priority

Step 1. Give one seat to each state.
Step 2. Attach a priority number to each state.
Step 3. Award seats one at a time by priority until the desired House size is reached.

Apportionment by Priority

Step 1. Give one seat to each state.
Step 2. Attach a priority number to each state.
Step 3. Award seats one at a time by priority until the desired House size is reached.

Priority number
for a state with
n seats

Apportionment by Priority

Step 1. Give one seat to each state.
Step 2. Attach a priority number to each state.
Step 3. Award seats one at a time by priority until the desired House size is reached.

$$
\begin{aligned}
& \text { Priority number } \\
& \text { for a state with } \\
& n \text { seats }
\end{aligned}=\frac{\text { state population }}{\text { ave }(n, n+1)}
$$

Five Averages

ave

- Greatest Divisors max
- Harmonic Means HaM
- Equal Proportions GeM
- Major Fractions AM
- Smallest Divisors min

The Last Seat

Who got the $435^{\text {th }}$ seat?

ave 435

- Greatest Divisors max IL
- Harmonic Means HaM MN
- Equal Proportions GeM MN
- Major Fractions AM NC
- Smallest Divisors min WA

The Last Seat

Who gets the $436^{\text {th }}$ seat?
ave $435 \quad 436$

- Greatest Divisors max IL WA
- Harmonic Means HaM MN CA
- Equal Proportions GeM MN NC
- Major Fractions AM NC MO
- Smallest Divisors min WA PA

The Last Seat

Who gets the $436^{\text {th }}$ seat?

$$
\text { ave } 435 \quad 436
$$

- Greatest Divisors max IL WA
- Harmonic Means HaM MN CA
- Equal Proportions GeM MN NC
- Major Fractions AM NC MO
- Smallest Divisors min WA PA

Priority list based on the 2010 census using the method of Equal Proportions.

The Future: Reform?

Four Proposals:

The Future: Reform?

Four Proposals:

- Thirty-thousand.org
- Wyoming Rule
- Neubauer and Gartner
- Webster's Method.

thirty-thousand.org

Here's an example of a concerned group:
http://www.thirty-thousand.org/

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 (10306) representatives.

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 (10306) representatives.

Jefferson basic divisor method.
CA: 1244 seats!

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Thirty-thousand.org advocates 50000/representative.
This creates a House with 6181 representatives using Webster's method of rounding.

California gets 747 seats.

The Wyoming Rule

The Wyoming Rule is a basic divisor method in which the divisor is the population of the least populous state (currently WY; hence, the name).
http://en.wikipedia.org/wiki/Wyoming Rule
http://www.outsidethebeltway.com/representation-in-the-house-the-wyoming-rule/

The Wyoming Rule

Results of applying the WY Rule to the 2000 and 2010 censuses.

The Wyoming Rule

Results of applying the WY Rule to the 2000 and 2010 censuses.

2000 smallest state: WY, 493782.
$h=569$ Huntington-Hill

The Wyoming Rule

Results of applying the WY Rule to the 2000 and 2010 censuses.

2000 smallest state: WY, 493782.
$h=569$ Huntington-Hill
2010 smallest state: WY, 563626 $h=543$ Dean HI
$h=542$ Huntington-Hill $h=540$ Webster NJ, SD

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics Margo G. (Gartner) Carr, Cerro Coso Community College
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Cerro Coso Community College
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. (Gartner) Carr, Cerro Coso Community College
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$.

Source: PSC 44(1), January 2011: 1—3.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics Margo G. (Gartner) Carr, Cerro Coso Community College
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is

Source: PSC 44(1), January 2011: 1—3.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics Margo G. (Gartner) Carr, Cerro Coso Community College
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that the apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is 871 .

Source: PSC 44(1), January 2011: 1—3.

Webster's Method

The simplest reform would be to replace the geometric mean of decimal rounding in the Huntington-Hill method by the arithmetic mean of decimal rounding in Webster's method.

Webster's Method

The simplest reform would be to replace the geometric mean of decimal rounding in the Huntington-Hill method by the arithmetic mean of decimal rounding in Webster's method.

The research of Balinski and Young has produced the following two key results. Since the Alabama paradox is a deal-breaker, then congressional apportionment must be based on a divisor method. Further, Webster's is the only rounding method that is unbiased towards either larger or smaller states.

Charles M. Biles, Ph.D.
Congressional
Apportionment
HONE
віо
RESOURCES
CONTACT
Constitutional Congregressional Apportionment Problem
How many seats in the U. S. House of Representatives does each stateger?
An answer is presented as an historical narrative with relevant and timely applications in an upcoming book, The History of Congressional Apportionment.

Chapter 1. Congressional Apportionment Based on the Census: 1790.
Chapter 2. Congressional Apportionment Based on the Census: 1800-1840.
Chapter 3. Congressional Apportionment Based on the Census: 1850-1890.
Chapter 4. Congressional Apportionment Based on the Census: 1900-1930.
Chapter 5. Congressional Apportionment Based on the Census: 1940-2010.
Chapter 6. An Historical Overture.

UNDER CONSTRUCTION
Charles Biles
Theriistory of Congressional Apportionment
HSU Press
Last update: 13 June 2017.
Cover Graphic courtesy of
The West Virginia Record

This site was created using WIX.com. Create your own for FREE >>

Thank You

It is time that I took my seat in this House!
http://www.nia977.wix.com/drbcap

Bonus Resources

Related Problems

Other problems related to apportionment include:

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Gerrymandering

Gerrymandering

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| \bullet | \bullet | \bullet | \bullet | \bullet | | |

Apportion into five districts.

Gerrymandering

\section*{$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \quad 0$ $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \quad 0$
 | | | | - | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | - | | | - | | | | | | | | | |

Gerrymandering

Gerrymandering

$$
\begin{array}{|llllllllll|}
\hline \bullet & \bullet \\
\hline \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \ddots & \bullet \\
\bullet & \ddots & \bullet \\
\hline
\end{array}
$$

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Related Problems

Other problems related to apportionment include:
$>$ Census: who is "enumerated."
$>$ State districting.
$>$ Suffrage: who is allowed to vote.
$>$ Voting: the mechanism of voting.

One Voter, One Vote: The Apportionment of Congressional Seats Reconsidered Author(s): Howard A. Scarrow
Source: Polity, Vol. 22, No. 2 (Winter, 1989), pp. 253-268
Published by: Palgrave Macmillan Journals
Stable URL: http://www.jstor.org/stable/3234834 .

Washington's Veto

United States [Philadelphia] April 51792.

Gentlemen of the House of Representatives

I have maturely considered the Act passed by the two Houses, intitled, "An Act for an apportionment of Representatives among the several States according to the first enumeration," and I return it to your House, wherein it originated, with the following objections.

First-The Constitution has prescribed that representatives shall be apportioned among the several States according to their respective numbers: and there is no one proportion or divisor which, applied to the respective numbers of the States will yield the number and allotment of representatives proposed by the Bill.

Second-The Constitution has also provided that the number of Representatives shall not exceed one for every thirty thousand; which restriction is, by the context, and by fair and obvious construction, to be applied to the seperate and respective numbers of the States: and the bill has allotted to eight of the States, more than one for thirty thousand.

George Washington.

Copy, DNA: RG 233, Second Congress, 1791-1793, Records of Legislative Proceedings, Journals; LB, DLC:GW. (from Philander Chase, et al., eds., The Papers of George Washington, Presidential Series, Vol. 10: March-August 1792 [Charlottesville, Va., 002], 213-14).

First Apportionment

Act

> Chap. XXIII.-An Jet for apportioning Representatives among the scveral States, according to the first enumeration.

Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, That from and after the third day of March one thousand seven hundred and ninety-three, the House of Representatives shall be composed of members elected agreeably to a ratio of one member for every thirty-three thousand persons in each state, computed according to the rule prescribed by the constitution; that is to say: Within the state of New Hampshire, four; within the state of Massachussetts, fourteen; within the state of Vermont, two; within the state of Rhode Island, two; within the state of Connecticut, seven; within the state of New York, ten; within the state of New Jersey, five; within the state of Pennsylvania, thirteen; within the state of Delaware, one; within the state of Maryland, eight; within the state of Virginia, nineteen; within the state of Kentucky, two; within the state of North Carolina, ten; within the state of South Carolina, six; and within the state of Georgia, two members.

Approved, April 14, 1792.

1790: Why 33000?

State	Population	30000	31000	32000	33000	34000	35000	36000	37000	38000	39000	40000
CN	236841	0.8947	0.6400	0.4013	0.1770	0.9659	0.7669	0.5789	0.4011	0.2327	0.0728	0.9210
DE	55540	0.8513	0.7916	0.7356	0.6830	0.6335	0.5869	0.5428	0.5011	0.4616	0.4241	0.3885
GA	70835	0.3612	0.2850	0.2136	0.1465	0.0834	0.0239	0.9676	0.9145	0.8641	0.8163	0.7709
KY	68705	0.2902	0.2163	0.1470	0.0820	0.0207	0.9630	0.9085	0.8569	0.8080	0.7617	0.7176
MD	278514	0.2838	0.9843	0.7036	0.4398	0.1916	0.9575	0.7365	0.5274	0.3293	0.1414	0.9629
MA	475327	0.8442	0.3331	0.8540	0.4038	0.9802	0.5808	0.2035	0.8467	0.5086	0.1879	0.8832
NH	141822	0.7274	0.5749	0.4319	0.2976	0.1712	0.0521	0.9395	0.8330	0.7322	0.6365	0.5456
NJ	179570	0.9857	0.7926	0.6116	0.4415	0.2815	0.1306	0.9881	0.8532	0.7255	0.6044	0.4893
NY	331589	0.0530	0.6964	0.3622	0.0482	0.7526	0.4740	0.2108	0.9619	0.7260	0.5023	0.2897
NC	353523	0.7841	0.4040	0.0476	0.7128	0.3977	0.1007	0.8201	0.5547	0.3032	0.0647	0.8381
PA	432879	0.4293	0.9638	0.5275	0.1175	0.7317	0.3680	0.0244	0.6994	0.3916	0.0995	0.8220
RI	68446	0.2815	0.2079	0.1389	0.0741	0.0131	0.9556	0.9013	0.8499	0.8012	0.7550	0.7112
SC	206236	0.8745	0.6528	0.4449	0.2496	0.0658	0.8925	0.7288	0.5739	0.4273	0.2881	0.1559
VT	85533	0.8511	0.7591	0.6729	0.5919	0.5157	0.4438	0.3759	0.3117	0.2509	0.1932	0.1383
VA	630560	0.0187	0.3406	0.7050	0.1079	0.5459	0.0160	0.5156	0.0422	0.5937	0.1682	0.7640
US	3615920	8.5307	8.6426	6.9975	4.5733	6.3506	7.3120	9.4422	9.7276	8.1558	5.7159	9.3980
	Unrepresen	255920	267920	223920	150920	215920	255920	339920	359920	309920	222920	375920

Alabama Paradox

How is this possible?

State	House $\mathbf{2 9 9}$	House $\mathbf{3 0 0}$
AL	7.646	7.671
TX	9.640	9.672
IL	18.640	18.702

With the House size at 299, Alabama was the last state to be allotted an extra representative to make the House size because of it's decimal. When the House size was increased to 300, all states' quotas were increased by 0.33%. And there were two states that got the extra representatives; and, this time, Texas and Illinois beat out Alabama.

US Census Bureau

The U.S. Census Bureau is housed within the Department of Commerce.

Check out the U.S. Census Bureau for what it says about apportionment.
http://www.census.gov/

Summary 7-page brochure:
http://www.census.gov/prod/cen2010/briefs/c2010br-08.pdf

History of Legislation:
http://www.census.gov/history/www/reference/apportionment/apportion ment legislation 1790 - 1830.html

More!

For playing around, learning or teaching:
http://www.cut-the-knot.org/ctk/Democracy.shtml

Key Decades

The key decades in the history of the Congressional apportionment problem are 1790, 1840 and 1850, and 1920. Here are some excellent resources for each of these periods.
$>$ Edmund J. James, The First Apportionment of Federal Representatives in the United States, Annals of the American Academy of Political and Social Science, 9 (January 1897): 1-41.
> Johanna Nicol Shields, Whigs Reform the "Bear Garden":
Representation and the Apportionment Act of 1842, Journal of the Early Republic, 5 (Fall 1983): 356-82.
> Charles W. Eagles, Democracy Delayed: Congressional Reapportionment and Urban-Rural Conflict in the 1920s, University of Georgia Press, 1990.

US History

For any serious research of U.S. history, one must know about the Journals of Congress which includes the House Journal and the Senate Journal:
http://memory.loc.gov/ammem/amlaw/lwhj.html

[^0]: U.S.:

 3615920/120 = 30,132.66...

