The Apportionment Controversy Bringing Down the House

Charles Biles, Ph.D.

Arts and Lecture Series
Santa Rosa Junior College
13 April 2015
Website: http://www.nia977.wix.com/drbcap
"... no political problem is less susceptible of a precise solution than that which relates to the number most convenient for a representative legislature, ..."

The Apportionment Question

How many seats in the U.S.
House of Representatives does each state get?

CONGRESSIONAL SEATS

(US population: 309,183,463)/435 $=710,767$
http://www.census.gov/2010census/data/apportionment-data.php

The Constitution: Article I

Section 1. All legislative Powers herein granted shall be vested in a Congress of the United States, which shall consist of a Senate and House of Representatives.

The Constitution: Article I

Section 2. The House of Representatives shall be composed of Members chosen every second Year by the People of the several States, . . .

The Constitution: Article I

Section 2. The House of Representatives shall be composed of Members chosen every second Year by the People of the several States, . . .

Representatives . . . shall be apportioned among the several States . . ., according to their respective Numbers, . . .

The Constitution: Article I

Section 2. The House of Representatives shall be composed of Members chosen every second Year by the People of the several States, . . .

Representatives . . . shall be apportioned among the several States . . ., according to their respective Numbers, . . .

The actual Enumeration shall be made within three Years after the first Meeting of the Congress . . ., and within every subsequent Term of ten Years, . . .

The Constitution: Article I

Section 2. The House of Representatives shall be composed of Members chosen every second Year by the People of the several States, . . .

Representatives . . . shall be apportioned among the several States . . ., according to their respective Numbers, . . .

The actual Enumeration shall be made within three Years after the first Meeting of the Congress . . ., and within every subsequent Term of ten Years, . . .

The Number of Representatives shall not exceed one for every thirty Thousand, but each State shall have at Least one Representative; . . .

CONGRESSIONAL SEATS

(US population: 309,183,463)/435 $=710,767$
http://www.census.gov/2010census/data/apportionment-data.php

The Apportionment Question: Two Views

The Apportionment Question: Two Views

- Transformation View:
- Distribution View:

The Apportionment Question: Two Views

- Transformation View: How to transform the census into seats in the House.
- Distribution View:

The Apportionment Question: Two Views

- Transformation View: How to transform the census into seats in the House.
- Distribution View: How to distribute a fixed number of seats to the States.

The Apportionment Question: Two Approaches

The Apportionment Question: Two Approaches

- Constituency Approach:
- House Size Approach:

The Apportionment Question: Two Approaches

- Constituency Approach: How many people should a congressperson represent?
- House Size Approach:

The Apportionment Question: Two Approaches

- Constituency Approach: How many people should a congressperson represent?
- House Size Approach: How many seats should there be in the House?

The First Census 1790

State	Population
CT	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560
US	3615920

The first apportionment population census.

Source:

Balinski and Young, Fair Representation, Second Edition, 2001, page 158.

The First Census 1790

State		Population
CT	5	236841
DE	1	55540
GA	3	70835
KY		68705
MD	6	278514
MA	8	475327
NH	3	141822
NJ	4	179570
NY	6	331589
NC	5	353523
PA	8	432879
RI	1	68446
SC	5	206236
VT		85533
VA	10	630560
US	65	3615920

The first apportionment population census.

Source:

Balinski and Young, Fair Representation, Second Edition, 2001, page 158.

The First Census 1790

State		Population
CT	5	236841
DE	1	55540
GA	3	70835
KY		68705
MD	6	278514
MA	8	475327
NH	3	141822
NJ	4	179570
NY	6	331589
NC	5	353523
PA	8	432879
RI	1	68446
SC	5	206236
VT	2	85533
VA	10	630560
US	67	3615920

The first apportionment population census.

Source:

Balinski and Young, Fair Representation, Second Edition, 2001, page 158.

First Apportionment Bills

House Bill
State Population
CT 236841
DE 55540
GA 70835
KY 68705
MD 278514
MA 475327
NH 141822
NJ 179570
NY 331589
NC 353523
PA 432879
RI 68446
SC 206236
VT 85533
VA 630560

First Apportionment Bills

First Apportionment Bills

First Apportionment Bills

First Apportionment Bills

Census		House Bill	
State	Population	Divisor 3000	Seats
CT	236841	7.895	7
DE	55540	1.851	1
GA	70835	2.361	2
KY	68705	2.290	2
MD	278514	9.284	9
MA	475327	15.844	15
NH	141822	4.727	4
NJ	179570	5.986	5
NY	331589	11.053	11
NC	353523	11.784	11
PA	432879	14.429	14
RI	68446	2.282	2
SC	206236	6.875	6
VT	85533	2.851	2
VA	630560	21.019	21
			112

First Apportionment Bills

Census	
State	Population
CT	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

House Bill
Divisor 30000 Seats
7.8957
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
15.84415
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$21.019 \quad 21$
112

Senate Bill
Divisor 33000 Seats

7.177	7
1.683	1
2.147	2
2.082	2
8.440	8
14.404	14
4.298	4
5.442	5
10.048	10
10.713	10
13.118	13
2.074	2
6.250	6
2.592	2
19.108	19
	105

Hamilton's Method

Federalists apply a new idea:

1. Determine the House size, h.
2. Calculate each state's fair share of h :

$$
\text { quota }=h \times \frac{\text { state population }}{\text { US population }}
$$

The House Bill

Census

State	
PTopulation	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

House Bill

Divisor 30000 Seats

7.8957
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
15.84415
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$21.019 \quad 21$

The House Bill

Census

State	
CT	2368 ation
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

House Bill

Divisor 30000 Seats

7.8957
$1.851 \quad 1$
$2.361 \quad 2$
$2.290 \quad 2$
$9.284 \quad 9$
$15.844 \quad 15$
$4.727 \quad 4$
$5.986 \quad 5$
$11.053 \quad 11$
$11.784 \quad 11$
$14.429 \quad 14$
$2.282 \quad 2$
$6.875 \quad 6$
$2.851 \quad 2$
$\begin{array}{rr}21.019 \quad 21 \\ & 112\end{array}$

The House Bill

Census

State	
Copulation	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

House Bill

Divisor $\mathbf{3 0 0 0 0}$	Seats	Quota $\boldsymbol{h}=\mathbf{1 1 2}$
7.895	7	7.336
1.851	1	1.720
2.361	2	2.194
2.290	2	2.128
9.284	9	8.627
15.844	15	14.723
4.727	4	4.393
5.986	5	5.562
11.053	11	10.271
11.784	11	10.950
1.429	14	13.408
2.282	2	2.120
6.875	6	6.388
2.851	2	2.649
21.019	21	19.531
	112	112

The House Bill

Census

State	
Copulation	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

House Bill

Divisor $\mathbf{3 0 0 0 0}$	Seats	Quota $\boldsymbol{h}=\mathbf{1 1 2}$
7.895	7	7.336
1.851	1	1.720
2.361	2	2.194
2.290	2	2.128
9.284	9	8.627
15.844	15	14.723
4.727	4	4.393
5.986	5	5.562
11.053	11	10.271
11.784	11	10.950
1.429	14	13.408
2.282	2	2.120
6.875	6	6.388
2.851	2	2.649
21.019	21	19.531
	112	112

The Quota Rule is violated.

The Senate Bill

Census
Senate Bill

State	
CT	236841
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

Divisor $\mathbf{3 3 0 0 0}$ Seats	
7.177	7
1.683	1
2.147	2
2.082	2
8.440	8
14.404	14
4.298	4
5.442	5
10.048	10
10.713	10
13.118	13
2.074	2
6.250	6
2.592	2
19.108	19
	105

32

The Senate Bill

Census Senate Bill

State	
CT	236841 a
DE	55540
GA	70835
KY	68705
MD	278514
MA	475327
NH	141822
NJ	179570
NY	331589
NC	353523
PA	432879
RI	68446
SC	206236
VT	85533
VA	630560

Divisor $\mathbf{3 3 0 0 0}$ Seats	Quota $\boldsymbol{h}=\mathbf{1 0 5}$	
7.177	7	6.877
1.683	1	1.613
2.147	2	2.057
2.082	2	1.995
8.440	8	8.088
14.404	14	13.803
4.298	4	4.118
5.442	5	5.214
10.048	10	9.629
10.713	10	10.266
13.118	13	12.570
2.074	2	1.988
6.250	6	5.989
2.592	2	2.484
19.108	19	18.310
	105	105

Problem

Census Senate Bill

State	Population	Divisor 33000 Seats		Quota $h=105$
CT	236841	7.177	7	6.877
DE	55540	1.683	1	1.613
GA	70835	2.147	2	2.057
KY	68705	2.082	2	1.995
MD	278514	8.440	8	8.088
MA	475327	14.404	14	13.803
NH	141822	4.298	4	4.118
NJ	179570	5.442	5	5.214
NY	331589	10.048	10	9.629
NC	353523	10.713	10	10.266
PA	432879	13.118	13	12.570
RI	68446	2.074	2	1.988
SC	206236	6.250	6	5.989
VT	85533	2.592	2	2.484
VA	630560	19.108	19	18.310
			105	105

Large states are favored over small states.

Hamilton's Method

State	Population	
CT	236841	
DE	55540	
GA	70835	
KY	68705	
MD	278514	
MA	475327	
NH	141822	
NJ	179570	
NY	331589	
NC	353523	
PA	432879	
RI	68446	
SC	206236	
VT	85533	
VA	630560	
US	3615920	120.5307
		= 30000

Hamilton's Method

State	Population	$h=120$
CT	236841	
DE	55540	
GA	70835	
KY	68705	
MD	278514	
MA	475327	
NH	141822	
NJ	179570	
NY	331589	
NC	353523	
PA	432879	
RI	68446	
SC	206236	
VT	85533	
VA	630560	
US	3615920	120.5307
		= 30000

Hamilton's Method

State	Population	$h=120$	Quota
CT	236841		7.860
DE	55540		1.843
GA	70835		2.351
KY	68705		2.280
MD	278514		9.243
MA	475327		15.774
NH	141822		4.707
NJ	179570		5.959
NY	331589		11.004
NC	353523		11.732
PA	432879		14.366
RI	68446		2.271
SC	206236		6.844
VT	85533		2.839
VA	630560		20.926
US	3615920	120.5307	120
$d=30000$			

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q
CT	236841		7.860	7
DE	55540		1.843	1
GA	70835		2.351	2
KY	68705		2.280	2
MD	278514		9.243	9
MA	475327		15.774	15
NH	141822		4.707	4
NJ	179570		5.959	5
NY	331589		11.004	11
NC	353523		11.732	11
PA	432879		14.366	14
RI	68446		2.271	2
SC	206236		6.844	6
VT	85533		2.839	2
VA	630560		20.926	20
US	3615920	120.5307	120	111
$d=30000$				

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120
$d=30000$					

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

First apportionment bill passed by Congress.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

First apportionment bill passed by Congress.

26 March 1792: bill sent to President Washington for approval.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

First apportionment bill passed by Congress.

26 March 1792: bill sent to President Washington for approval.

5 April 1792: Washington vetoes the bill.

Hamilton's Method

State	Population	$h=120$	Quota	Lower Q	Appt
CT	236841		7.860	7	8
DE	55540		1.843	1	2
GA	70835		2.351	2	2
KY	68705		2.280	2	2
MD	278514		9.243	9	9
MA	475327		15.774	15	16
NH	141822		4.707	4	5
NJ	179570		5.959	5	6
NY	331589		11.004	11	11
NC	353523		11.732	11	12
PA	432879		14.366	14	14
RI	68446		2.271	2	2
SC	206236		6.844	6	7
VT	85533		2.839	2	3
VA	630560		20.926	20	21
US	3615920	120.5307	120	111	120

U.S.:
$3615920 / 120=30,132.66 \ldots$

Hamilton's Method

Basic Jefferson Method

After Washington's veto, in 6 days Congress passed the original Senate bill.

Washington signed it on 14 April 1972.

Basic Jefferson Method

1. Decide on a divisor (constituency).
2. Calculate each state's quotient:
quotient = population/divisor
3. A state's apportion is the quotient rounded down.

Basic Jefferson Method

1. Decide on a divisor (constituency).
2. Calculate each state's quotient:
quotient = population/divisor
3. A state's apportion is the quotient rounded down.

The House size is the sum of the state apportionments.

First 50 years

The method was used until 1840.

* 1790: $s=15 ; d=33000 \Rightarrow h=105$
* 1800: $s=16 ; d=33000 \Rightarrow h=141$
* 1810: $s=17 ; d=35000 \Rightarrow h=181$
* 1820: $s=24 ; d=40000 \Rightarrow h=213$
* 1830: $s=24 ; d=47700 \Rightarrow h=240$

Basic Jefferson Method

Problems were discovered as the method was used; however, the defects were evident from the start:

Basic Jefferson Method

Problems were discovered as the method was used; however, the defects were evident from the start:

- systematically favors larger states;
- can violate the Quota Rule.

John Quincy Adams

John Quincy Adams was concerned about the apportionment bill based on the 1830 census.

John Quincy Adams

John Quincy Adams was concerned about the apportionment bill based on the 1830 census.
Adams proposed amending Jefferson's method by rounding up rather than down.

John Quincy Adams

John Quincy Adams was concerned about the apportionment bill based on the 1830 census.
Adams proposed amending Jefferson's method by rounding up rather than down.

But Adams has flaws similar to Jefferson: it can violate the quota rule; systematically favors smaller states over larger states.

James Dean

James Dean was professor of mathematics at the University of Vermont. Dean wrote Webster a letter suggesting a new method.

James Dean

James Dean was professor of mathematics at the University of Vermont. Dean wrote Webster a letter suggesting a new method.

Choose a divisor and calculate each state's quotient. Then round the decimal quotient that yields a constituency closest to the divisor.

James Dean

Divisor: 50,000.
Vermont's population: 280,657.
Vermont's quotient: $280,657 / 50,000=5.613$.
Then, Jefferson assigns 5 seats to Vermont; Adams, 6 seats.
5 seats constituency: $280,657 / 5=56,131$.
6 seats constituency: $280,657 / 6=46,776$.
Now 46,776 is closer to the target of 50,000.
Dean awards Vermont 6 seats.

Daniel Webster

Adams and Dean got Webster thinking.
Just round the decimal quotient normally: if (decimal part) < .5, then round down; if (decimal part) > .5, then round up.

1831

How to round a decimal?
Jefferson: down.
Adams: up.
Dean: closest to constituency.
Webster: normally.

1842

In 1842 the apportionment debate began with the political game: Divisor! On one day in the 242 member House, 59 motions were made to establish a divisor; values ranged from 30000 to 141000 .

1842

The Apportionment Act of 1842 specified the divisor 70680 (result: House of 223) with rounding using Webster's method.

The Vinton Act

The Vinton Act of 1850 was passed to head off politicizing the census figures and adopt a permanent appropriation act.

Representative Samuel Vinton Whig, Ohio

The Vinton Act

The Vinton Act specified a House with 233 seats apportioned by Hamilton's method.

The Vinton Act

The Vinton Act specified a House with 233 seats apportioned by Hamilton's method.

Experience exposed problems with the Vinton Act.

1920

$>$ No re-apportionment act was passed.
$>$ Congress could not agree on the method of apportionment.
$>$ Prohibition played a significant role: the dries would not consider any allocation giving the wets more power.

Lessons from History

Experience using the quota method shows that it is subject to counter-intuitive paradoxes; especially, the Alabama Paradox:

Lessons from History

Experience using the quota method shows that it is subject to counter-intuitive paradoxes; especially, the Alabama Paradox:
when the number of House seats is increased, a state's apportion may decrease.

Alabama Paradox

Results from the 1900 census doomed Hamilton's method. In particular, Maine oscillated as follows:

3 members for House size 350-382, 386, 389-390
4 members for House size 383-385, 387-388, 391-400

Today

The method used today is described in Public Law 291. It consists of a 1929 statute that freezes the House size (435) and a 1941 amendment that specifies the apportionment method of

Today

The method used today is described in Public Law 291. It consists of a 1929 statute that freezes the House size (435) and a 1941 amendment that specifies the apportionment method of

Huntington and Hill.

Today

Huntington and Hill is a divisor method that rounds the decimal part of a state's quotient . . .

Suppose a state's quotient (state population/divisor) = q = n.d.

Webster: round up if $q>n .5$.

Today

Huntington and Hill is a divisor method that rounds the decimal part of a state's quotient . . .

Suppose a state's quotient (state population/divisor) = q = n.d.

Webster: round up if $q>n .5$.
Huntington-Hill: round up if $q \geq \sqrt{n(n+1)}$.

The Aftermath

Michel Balinski, Professor of Mathematics at SUNY Stony Brook, and H. Peyton Young, Professor of Mathematics at Johns Hopkins University, proved the following theorem in 1982:

There are no perfect apportionment methods. Any method that satisfies the quota rule produces paradoxes; any method that is free of the Alabama paradox may violate the quota rule.

The Aftermath

Michel Balinski, Professor of Mathematics at SUNY Stony Brook, and H. Peyton Young, Professor of Mathematics at Johns Hopkins University, proved the following theorem in 1982:

There are no perfect apportionment methods. Any method that satisfies the quota rule produces paradoxes; any method that is free of the Alabama paradox may violate the quota rule.

In particular, any divisor method may violate the quota rule; any quota method produces paradoxes.

Well-Rounded Ideas

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

Jefferson

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

They Mean Well

A modified divisor method first fixes the House size, then seeks a divisor that when the state's quotients are rounded and summed, the house size is achieved.

Apportionment Problems

In the 1990 apportionment, Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

Montana argued the H-H method is unconstitutional and that either Dean's or Adam's method should be used. The federal judges voted 2-1 in favor of Montana.

Webster: arithmetic mean
Huntington-Hill: geometric mean
Dean: harmonic mean

Apportionment Problems

In the 1990 apportionment, Montana lost one of its two seats it held for 80 years. In 1991 MT filed suit in federal district court (MT vs. US Dept Commerce).

Montana argued the H-H method is unconstitutional and that either Dean's or Adam's method should be used. The federal judges voted 2-1 in favor of Montana.

The Apportionment Question

How many seats in the U.S.
House of Representatives does each state get?

Reform

Three Proposals:

- Thirty-thousand.org
- The Wyoming Rule
- Neubauer and Gartner

thirty-thousand.org

Here's an example of a concerned group:
http://www.thirty-thousand.org/

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 representatives.

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 representatives.

In 2010 Santa Rosa's population was 167815. So, Santa Rosa would have 5 seats in the House.

thirty-thousand.org

Here's an example of a concerned group:

http://www.thirty-thousand.org/

Comment: This leads to a House with 10283 representatives.

In 2010 Santa Rosa's population was 167815. So, Santa Rosa would have 5 seats in the House.

CA: 1244 seats!

The Wyoming Rule

The Wyoming Rule is a basic divisor method in which the divisor is the population of the least populous state (currently WY; hence, the name).
http://en.wikipedia.org/wiki/Wyoming Rule
http://www.outsidethebeltway.com/representation-in-the-house-the-wyoming-rule/

The Wyoming Rule

Let's apply the WY Rule to the 2000 and 2010 censuses.

The Wyoming Rule

Let's apply the WY Rule to the 2000 and 2010 censuses.

2000: smallest state: WY, 493782.
$h=569$ Huntington-Hill

The Wyoming Rule

Let's apply the WY Rule to the 2000 and 2010 censuses.

2000: smallest state: WY, 493782.
$h=569$ Huntington-Hill
2010: smallest state: WY, 563626

$$
h=543 \text { Dean } \mathrm{HI}
$$

$h=542$ Huntington-Hill
$h=540$ Webster NJ, SD

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. Gartner (master's degree student)
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. Gartner (master's degree student)
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. Gartner (master's degree student)
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$.

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. Gartner (master's degree student)
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is

A Proposal

A Proposal for Apportioning the House
Michael G. Neubauer, CSU Northridge, Mathematics
Margo G. Gartner (master's degree student)
...the problem of finding a "good" house size and "right" apportionment method are best considered together.

Definition. A House size is agreeable means that apportionments by the methods of Hamilton, Dean, Huntington-Hill, and Webster all agree.

Proposal. From the 2000 census, $h=435$ was not agreeable. The first agreeable House size greater than 435 is $h=477$. From the 2010 census, $h=435$ is still not agreeable. The first agreeable House size greater than 435 is 871 .

Thank You

It is time that I took my seat in this House!

For more: http://nia977.wix.com/drbcap

